

Determination of the H₂O content in minerals, especially zeolites, from their refractive indices based on mean electronic polarizabilities of cations

Reinhard X. Fischer¹, Manfred Burianek¹, and Robert D. Shannon²

¹FB 5 Geowissenschaften, Universität Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany ²Geological Sciences/CIRES, University of Colorado, Boulder, Colorado 80309, USA

Correspondence: Reinhard X. Fischer (rfischer@uni-bremen.de)

Received: 10 September 2019 - Revised: 14 October 2019 - Accepted: 28 October 2019 - Published: 15 January 2020

Abstract. It is shown here that the H_2O content of hydrous minerals can be determined from their mean refractive indices with high accuracy. This is especially important when only small single crystals are available. Such small crystals are generally not suitable for thermal analyses or for other reliable methods of measuring the amount of H_2O . In order to determine the contribution of the H_2O molecules to the optical properties, the total electronic polarizability is calculated from the anhydrous part of the chemical composition using the additivity rule for individual electronic polarizabilities of cations and anions. This anhydrous contribution is then compared with the total observed electronic polarizability calculated from the mean refractive index of the hydrous compound using the Anderson–Eggleton relationship. The difference between the two values represents the contribution of H_2O . The amount can be derived by solving the equation

 $\alpha_{\text{calc}} = \sum_{i} n_i \alpha_{i\text{cat}} + \sum_{j} \left(\alpha_j^o \times 10^{-\left[\frac{N_j}{V_{\text{m}}^{1.2}} \times (n_j + n_W)^{1.2}\right]} \right) + n_w \times \alpha_W \text{ for the number } n_w \text{ of H}_2\text{O} \text{ molecules per for-}$

mula unit (pfu), with the electronic polarizabilities α_{cat} for cations, the values N and α^o describing the anion polarizabilities, the number n of cations and anions, and the molar volume V_m , using a value of $\alpha_W = 1.62 \text{ Å}^3$ for the electronic polarizability of H₂O. The equation is solved numerically, yielding the number n_w of H₂O molecules per formula unit. The results are compared with the observed H₂O content evaluating 157 zeolite-type compounds and 770 non-zeolitic hydrous compounds, showing good agreement. This agreement is expressed by a factor relating the calculated to the observed numbers being close to 1 for the majority of compounds. Zeolites with occluded anionic or neutral species (SO₃, SO₄, CO₂, or CO₃) show unusually high deviations between the calculated and observed amount of H₂O, indicating that the polarizabilities of these species should be treated differently in zeolites and zeolite-type compounds.

1 Introduction

The water content of hydrous minerals and synthetic compounds is usually determined by thermogravimetric methods recording the weight loss upon dehydration at an increasing temperature. If the chemical composition of the anhydrous part of the compound is known, its formula weight can be calculated along with the number of H_2O molecules representing the weight loss. Whereas the cation content can be derived from microchemical analyses, e.g., by electron microprobe analyses (EMPA) or analytical transmission electron microscopy (ATEM), on species with a size of a few microns, thermoanalytical methods for the determination of the water content require an amount of a sample in the range of a few milligrams. The same applies to carbon hydrogen and nitrogen (CHN) analyzers which usually need a few milligrams for accurate analyses. Alternatively, the H₂O content could be derived from the measured density if the specimen is big enough for the experimental determination of the density. The determination of the water content becomes less accurate if lower amounts or even just one single crystal with a size of about $100 \,\mu\text{m}$ and a mass of a few micrograms or less exists.

It is well known that the optical properties vary with the amount of H₂O in a crystalline compound. We mention two examples: Hey and Bannister (1932a) studied the effect of dehydration on the optical properties of natrolite, and Medenbach et al. (1980) investigated the variation in the refractive index of synthetic Mg-cordierite with H₂O content, finding a linear relationship between the mean refractive index and the weight fraction of H₂O. All studies we know so far are empirical descriptions of the dependence of the refractive indices on the H₂O content derived by calibration curves for a special system of compounds. Here, we describe a theoretical approach for determining the H₂O content from mean refractive indices of compounds with known chemical composition of the anhydrous part. We show that the number of H₂O molecules per formula unit (pfu) can be determined with high accuracy from the mean refractive indices of hydrous crystals.

A special focus is on the zeolite group of minerals, representing a large and popular group of hydrous minerals. Zeolites represent one of the most important classes of materials, used as catalysts in oil refineries for the production of gasoline and as ion exchangers as an additive, e.g., in household detergents for the softening of water. Following the definition of the subcommittee on zeolites of the International Mineralogical Association (Coombs et al., 1998), "A zeolite mineral is a crystalline substance with a structure characterized by a framework of linked tetrahedra, each consisting of four O atoms surrounding a cation. This framework contains open cavities in the form of channels and cages. These are usually occupied by H_2O molecules and extra-framework cations that are commonly exchangeable".

2 Theoretical background

Our approach is based on the fact that the total electronic polarizability of a mineral or synthetic compound can be calculated from the sum of the individual contributions of the electronic polarizabilities α_{cat} of cations and α_{an} of the anions, following the procedure described by Shannon and Fischer (2016). Thus, the total polarizability of the anhydrous compound can be calculated from the chemical composition which then can be compared with the total polarizability derived from the observed mean refractive indices of the hydrous compound. The difference represents the contribution of the H₂O molecules. To obtain the H₂O content, refractive indices are measured, e.g., by immersion methods with a spindle stage on a petrographic microscope. Anisotropic indices are averaged according to $(n_x + n_y + n_z)/3$ or $(2n_o + n_e)/3$, yielding the mean refractive index <n>.

The total observed polarizability of the hydrous compound is then calculated from the mean refractive index $\langle n \rangle$ using the Anderson–Eggleton relationship (Anderson, 1975; Eggleton, 1991; see Shannon and Fischer, 2016, for an explanation):

$$\alpha_{\rm obs} = \frac{\left(n^2 - 1\right) V_{\rm m}}{4\pi + \left(\frac{4\pi}{3} - 2.26\right) \left(n^2 - 1\right)},\tag{1}$$

with the molar volume $V_{\rm m}$ of one formula unit.

The total electronic polarizability of the anhydrous compound can be calculated from the sum of the individual ion contributions (Shannon and Fischer, 2016) according to

$$\alpha_{\text{calc}} = \sum_{i=1}^{N_{\text{cat}}} m_i \times \alpha_{i\text{cat}} + \sum_{i=1}^{N_{\text{an}}} n_i \times \alpha_{i\text{an}}, \qquad (2)$$

with

$$\alpha_{\rm an} = \alpha_{-}^{o} \times 10^{-N_o/V_{\rm an}^{1.2}},\tag{3}$$

where α_{cat} is taken from Table 4 and α_{-}^{o} and N_{o} from Table 5 in Shannon and Fischer (2016), and the anion volume V_{an} is calculated from the molar volume V_{m} divided by the number of anions and H₂O molecules.

The difference between observed and calculated polarizabilities $\Delta = (\alpha_{obs} - \alpha_{calc})$ is due to the contribution of H₂O. However, Δ cannot be simply divided by the electronic polarizability 1.62 Å³ of H₂O because it is treated like an anion and not like a cation (Shannon and Fischer, 2016). Therefore, the number n_w of H₂O molecules has an influence on the calculation of the anion volume V_{an} in Eq. (3), so it is needed to calculate the contribution of the anions even for the anhydrous part of the compound.

If we combine Eqs. (2) and (3) and separate the contribution of H_2O from the other anions, we get

$$\alpha_{\text{calc}} = \sum_{i} n_{i} \alpha_{i\text{cat}} + \sum_{j} \left(\alpha_{j}^{o} \times 10^{-\left[\frac{N_{j}}{V} \times (n_{j} + n_{W})^{1.2}\right]} \right) + n_{w} \times \alpha_{W},$$
(4)

with $V = V_{\rm m}^{1.2}$, the number n_w of H₂O molecules per formula unit, and the electronic polarizability $\alpha_W = 1.62 \text{ Å}^3$ of H₂O.

Replacing α_{calc} in Eq. (4) by α_{obs} from Eq. (1) and solving for n_w yields the number of H₂O molecules per formula unit.

The solution is done numerically using the program PO-LARIO (Fischer et al., 2018).

3 Dataset

We tested the approach on hydrous minerals with known chemical composition, water content, and refractive indices, taken from Table S1 in Shannon et al. (2017) and additional entries compiled here. The group of zeolite minerals is treated separately because it represents one of the most

No.	Zeolite name	Chem. composition ^a	q <u></u>	$V_{\mathrm{m}}^{V_{\mathrm{m}}}$ $(\mathrm{\AA}^3)^{\mathrm{c}}$	$^{lpha obs}_{({ m \AA}^3)^{ m d}}$	n_w (obs) ^e	n_w (calc) ^f	$n_w (obs)/$ $n_w (calc)^g$	References ^h
-	Amicite	K3.75Na3.61Ca0.05A17.86Sis.24O32 · 9.67H2O	1.498	1052.94	87.524	9.67	13.58	0.71	Alberti et al. (1979), lp
									trom Alberti and Vez- zalini (1979)
7	Analcime synth.	$Na_{0.9}Al_{0.9}Si_{2.1}O_{6} \cdot 1.1H_{2}O$	1.486	160.71	13.034	1.1	1.09	1.01	Černý (1974)
б	Analcime	$Na_{0.761}Cs_{0.098}K_{0.019}Ca_{0.002}Al_{0.91}6Si_{2.093}O_{6} \cdot 0.96H_{2}O_{10}$	1.492	160.50	13.179	0.96	1.02	0.94	Černý (1974)
4	Barrerite	Na1.36Ca0.21Mg0.04K0.27Al2.05Si6.93O18 · 6.45H2O	1.4844	553.78	44.765	6.45	6.86	0.94	Passaglia and
v	Rellheraite	Rav ov Nav. and V. and V. and I.a. and Strong Conv. 2014.0	1 517	2429.00	200 656	30	38 50	0.78	Pongnuppi (1974) Riidinger et al 71003)
. 4	Bikitaite	21.10C · 21.00C · 21.00C · 2.00C · 2.	1.517	147.92	12.768	0.98	0.94	1.04	Leavens et al. (1968)
~ ~	Bikitaite	Lingt 2 Nations 5.99 06 000 1.15H50 Lingt 5 Nations Knott Marints 2 11 15 150	1.518	148.41	12.835	1.15	1.04	1.24	Hurlbut (1957)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Boggsite	Car 77/Nay 04/MEn 13/K1 16/All 8 30/Si77 61 0107 24 · 69.9H50	1.483	6149.01	495.609	6.69	86.36	0.81	Howard et al. (1990)
6	Brewsterite	Ba1.8Mgn n8Nap.07K0.04Ca0.03Sr0.02A14.29Fe0.02Si11.78O32 · 10H2O	1.519	920.52	79.762	10	9.93	1.01	Cabella et al. (1993)
10	Brewsterite	Bal, 7St0.26 Ca0.02 K0.02Na0.02Al4, 14S11, 90O32 · 10H2O	1.519	919.90	79.708	10	9.95	1.01	Robinson and Grice
Ξ	Chabazite	Cao ioMoo ioNai zi Ko ioAh iz Sio i Ori 10 1400	1 461	807 70	62,106	10.1	10.8	0.94	(1993) Gude and Shennard
:			101-1	000			0.01	100	(1966)
12	Chabazite	Na3.11 K1.05 Ca0.19 Mg0.06 Sr0.05 Al4.53 Fe $_{0.01}$ Si7,40 O24 $\cdot$ 11.47H2 O	1.477	841.33	66.961	11.47	12.30	0.93	Passaglia (1970)
13	Chabazite	$Na_{2.91}K_{0.68}Ca_{0.33}Mg_{0.02}Sr_{0.03}Al_{4.15}Fe_{0.02}Si_{7.79}O_{24} \cdot 11.65H_{2}O_{24}$	1.479	838.10	66.986	11.65	12.65	0.92	Passaglia (1970)
14	Chabazite	$Na_{1,96}K_{0,18}Ca_{0,72}Mg_{0,01}Sr_{0,01}Al_{3,72}Fe_{0,01}Si_{8,30}O_{24} \cdot 11.97H_{2}O$	1.480	831.10	66.567	11.97	12.85	0.93	Passaglia (1970)
15	Chabazite	$Na_{0.17}K_{0.92}Ca_{1.30}Mg_{0.01}Sr_{0.56}Ba_{0.07}Al_{4.93}Fe_{0.01}Si_{7.05}O_{24} \cdot 13.20H_{2}O_{10}$	1.516	844.62	72.761	13.20	15.13	0.87	Passaglia (1970)
16	Chabazite	$Na_{0.28}K_{1.36}Ca_{1.04}Mg_{0.02}Sr_{0.40}Ba_{0.06}Al_{4.87}Fe_{0.01}Si_{7.17}O_{24} \cdot 13.16H_{2}O_{10}$	1.517	850.28	73.391	13.16	15.61	0.84	Passaglia (1970)
17	Chabazite	${ m Na}_{0.09}{ m K}_{0.86}{ m Ca}_{1.38}{ m Mg}_{0.02}{ m Sr}_{0.48}{ m Ba}_{0.09}{ m Al}_{4.84}{ m Fe}_{0.02}{ m Si}_{7.14}{ m O}_{24}\cdot 13.91{ m H}_{2}{ m O}$	1.514	846.93	72.675	13.91	15.10	0.92	Passaglia (1970)
18	Chabazite	$Na_{0.15}K_{1.08}Ca_{1.31}Mg_{0.03}Sr_{0.57}Ba_{0.04}Al_{4.92}Fe_{0.02}Si_{7.02}O_{24}\cdot 13.55H_{2}O_{24}$	1.516	845.35	72.823	13.55	15.04	06.0	Passaglia (1970)
19	Chabazite	$Na_{0.31}K_{0.41}Ca_{1.30}Mg_{0.10}Sr_{0.04}Ba_{0.01}Al_{3.59}Fe_{0.17}Si_{8.28}O_{24}\cdot 12.49H_{2}O_{10}$	1.498	828.00	68.826	12.49	13.60	0.92	Passaglia (1970)
20	Chabazite	$Na_{1.59}K_{0.13}Ca_{1.13}Mg_{0.01}Sr_{0.01}A_{13.93}Fe_{0.01}Si_{8.04}O_{24} \cdot 14.22H_{2}O_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si$	1.486	829.74	67.296	14.22	13.07	1.09	Passaglia (1970)
21	Chabazite	$Na_{0.27}K_{0.21}Ca_{1.39}Mg_{0.02}Sr_{0.05}Al_{3.38}Fe_{0.02}Si_{8.60}O_{24} \cdot 12.95H_{2}O_{10}Si_{8.60}O_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}Si_{10}S$	1.486	825.04	66.915	12.95	12.89	1.00	Passaglia (1970)
22	Chabazite	Na0.11K0.04Ca1.45Mg0.01Sr0.61Al4.17Fe0.01Si7.80O24 · 14.61H2O	1.506	831.32	70.219	14.61	14.34	1.02	Passaglia (1970)
23	Chabazite	Na0.06K0.48Ca1.31Mg0.02Sf0.15Al3.60Fe0.02Si8.41O24 · 12.66H2O	1.492	827.08	67.915	12.66	13.28	0.95	Passaglia (1970)
24	Chabazite	Na0.03K0.20Ca1.86Mg0.02St0.03Al3.94Fe0.01St8.03O24 · 13.16H2O	1.498	825.63	68.629	13.16	13.57	0.97	Passaglia (1970)
33	Chabazite	Na0.09K0.18Ca1.55Mg0.06St0.13Al3.73Fe0.01St8.26O24 · 12.84H2O	1.494	60.028	670.89	12.84	13.38	0.96	Passaglia (1970)
07	Chabazite	Na0.16K0.40 Ca1.03Mg0.15 Sr0.06 Ba0.03A13.23 S18.80 O24 · 15.25H2 O	1.488	80.028	07:20	CZ.CI	15.51	CL.1	Passaglia (1970)
17	Chabazite	Na1.45 <b>K</b> 0.38 Ca1.03 Mg0.01 Sf0.07 Ba0.02 A14.10 Fe0.01 S17.90 U24 · 1 2.3 / H2U Nia V Canor Maa Si Via Via Via Via Via Via Via Via Via Vi	1.490	10.068	08.334 67 473	10.21	15.48	56.0 70.0	Passagiia (1970)
87 70 7	Chabazite Chabazite	Nä0.92/K0.13/cä1.25/Mg0.01.510.04 bä0.01 A13.77598.25/024 + 12.65712/0 Na+ or Ko ar Ca+ or Ma+ ar Sro ar Ab+ or Fao ar Six + 102 + 12 + 114-0	1.488 1.488	82057 82757	6/4/0 67 802	112.00	12.01	16.0 0 0 0	Passagiia (1970) Dassagiia (1070)
50	Chabazitei	۲۰۰۰, 28 ۲۰۰۵ 22 ۵۰۰, 1.00 ۲۰۰۶ 0, 01 ۵۰۰ 0, 05 ۲۰۰۵, 851 ۲۰۰۵, 14 ۷ 24 ۲۰۰۵, 1112 ۷ ۱۰۰۰ - ۲۰۰۵ - ۲۰۰۸ ۵۰۰ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۵۰۰ ۲۰۰۵	1 406	20.200	60 250	13.02	12.61	100	
00 16	Chahazite	1/40,17/50,15/41.70/MB0,01.910,01 Au3.72.948,27/024 * 13:3/2/112/0 Nao 1.Ko 1:5/24 * 5:5/MB0, 5: Ali 5:0/Si 1:7/2/1 * 12/47H5/0	1 496	27.020	600.00 080 89	26.01 12 47	00.61	1.02 0.80	Fassagua (1970) Paceaolia (1970)
32	Chabazite	Nan 35 Kn in Cat. 48 Stn nd Ban ne Ala 53 Sig nd 024 122.66 H50	1.495	818.91	67.657	12.66	13.26	0.95	Passaglia (1970)
33	Chabazite	Nan 19Kn 73Cat 15Stn 70Ban 14Al3 44Si8 58O24 · 12.24H2O	1.492	822.46	67.536	12.24	13.11	0.93	Passaglia (1970)
34	Chabazite	Na0.17K0.32Ca1.49Mgn.07Sf0.04Ba0.04Al3.39Si8.55O24 · 12.44H2O	1.495	824.84	68.147	12.44	13.52	0.92	Passaglia (1970)
35	Chabazite	$Na_{0.03}K_{0.42}Ca_{0.99}Sr_{0.41}Ba_{0.05}Al_{3.67}Si_{8.41}O_{24} \cdot 12.77H_{2}O$	1.487	826.28	67.154	12.77	12.75	1.00	Passaglia (1970)
36	Chabazite	$Na_{1.64}K_{0.13}Ca_{0.19}Mg_{0.19}Al_{2.46}Fe_{0.02}Si_{9.51}O_{24} \cdot 10.10H_2O$	1.461	806.27	61.996	10.10	10.70	0.94	Passaglia (1970)
37	Chiavennite	Ca0.92Na0.12Mn0.80Fe0.15Mg0.02Be1.86Al0.14Al0.57Si4.43O12.45(OH)2.49F0.06 · 1.83H2O	1.6047	332.55	33.567	1.83	2.55	0.72	Raade et al. (1983)
38	Clinoptilolite	Na ₂ .10Ca _{0.48} K _{1.64} Mg _{0.23} Al _{0.24} Al _{5.83} Si _{30.17} O ₇₂ · 24.0H ₂ O	1.479	2100.3	167.869	24.0	21.65	1.11	Wise et al. (1969)
39	Dachiardite	$ m Na_2.93K_{0.36}Sr_{0.01}Al_{3.5}Sr_{20.47}O_{48}\cdot 12.76H_2O$	1.474	1361.2	107.649	12.76	12.47	1.02	Bonardi et al. (1981)
40	Dachiardite	Ca0.53Mg0.04Ba0.01Na2.59K0.71Al4.27Fe0.11Si19.61O48 · 13.43H2OBa0.26Na0.72K1.33Sr2.36Ca5.32Al	1.481	1367.64	109.771	13.43	12.59	1.07	Alberti (1975)
41	Direnzoite	$Na_{1,12}K_{2,73}Mg_{1.56}Ca_{2,17}Fe_{0.15}Sr_{0.03}Ba_{0.01}Al_{13,40}Si_{46,98}O_{120}\cdot35.99H_2O$	1.483	3607.74	290.783	35.99	40.27	0.89	Galli and Gualtieri
42	Edingtonite	Bao ac Ko aze Ala ase Siz 115 Ota 22 : 3.67H5 O	1.541	300.98	27.189	3.67	3.26	1.13	(2000) Grice et al. (1984)
43	Edingtonite	Bat nnKn n1 Al2 115 Si3 10 O 10 39 3.561H5O	1.546	300.47	27.394	3.61	3.26	1.11	Grice et al. (1984)
44	Edingtonite	Ba1.015Ca0.01Na0.01K0.07A1.985Si2.98O10.04 · 3.69H2O	1.550	302.14	27.748	3.69	3.82	0.97	Hey and Bannister
									(1934)

85	84	83	82	81	80	79	78	77	]	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62			61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45		No.	 Table
Mordenite-Sr	Montesommaite	Merlinoite	Mazzite	Lovdarite	Levyne	Levyne	Levyne	Levyne	•	Leonhardite	Leonhardite	Laumontite	Heulandite-Sr	Heulandite-Ba	Heulandite	Harmotome	Gottardiite	Goosecreekite	Gobbinsite	Gismondine	Gaultite	Flörkeite	Ferrochiavennite	Ferrierite-NH4			Ferrierite-K	Ferrierite	Faujasite-Ca	Erionite	Erionite	Erionite	Erionite	Erionite	Erionite	Erionite	Erionite	Erionite	Erionite	Erionite	Erionite	Erionite	Edingtonite	name	Zeolite	1. Continued
$Ca_{2.02}Sr_{0.46}Na_{3.12}K_{0.36}Al_{8.32}Si_{39.66}O_{96} \cdot 30.1H_2O$	$K_{8.6}Na_{0.2}Al_{9.4}Si_{22.6}O_{63.7} \cdot 10.25H_2O$	$K_{4,21}Ca_{1,49}Na_{0,55}Ba_{0,24}Fe_{0,24}Al_{9,31}Si_{22,66}O_{64}\cdot22.74H_2O$	$Na_{0.03}K_{1.91}Ca_{1.35}Mg_{1.99}Al_{9.77}Si_{26.54}O_{72} \cdot 28.03H_2O$	Na12.32K3.40Ca2.24Ba0.04Be7.04Al0.80Ti0.04Fe0.04Mg0.04Si23.88Al0.08P0.04O64.56 17.48H2O	$Na_{0.96}K_{0.24}Ca_{2.88}Al_{6.81}Si_{11.16}O_{36} \cdot 17.4H_2O$	Ca _{2.73} Na _{0.65} K _{0.20} Al _{6.31} Si _{11.69} O ₃₆ · 16.66H ₂ O	$Ca_{2,36}Na_{0,82}K_{0,33}Al_{5,58}Si_{12,35}O_{36} \cdot 16.14H_2O$	$Ca_{2.50}Na_{0.84}K_{0.06}AI_{6.11}Si_{11.94}O_{36} \cdot 16.98H_2O$		Ca4.02Na0.03K0.05Mn0.02Mg0.02Al7.98Si 15.96P0.03O48 · 14.07H2O	Ca2.55Na1.24K1.59Al8.19S115.87O48 · 13.93H2O	Ca _{3.35} Na _{0.77} K _{0.27} Al _{8.24} Si _{15.87} O ₄₈ · 17.10H ₂ O	$Na_{1.44}K_{0.83}Ca_{1.57}Sr_{1.25}Ba_{0.46}Mg_{0.06}Al_{9.05}Si_{26.97}O_{72}\cdot 25H_2O$	$Ba_{2,49}Ca_{1,41}Sr_{0,30}K_{0,37}Na_{0,33}Al_{8,96}Si_{27,00}O_{72,00}\cdot 21.75H_2O$	$C_{43.5}Sr_{0.4}K_{0.9}Al_{9.3}Si_{26.8}O_{72} \cdot 26.1H_2O$	Mg _{0.17} Ca _{0.02} Ba _{1.98} Na _{0.86} K _{0.07} Al _{4.39} Fe _{0.14} Si _{11.05} O _{31.53} · 12.69H ₂ O	$Na_{2.5}K_{0.20}Mg_{3.10}Ca_{4.8}Al_{18.80}Si_{117.2}O_{272} \cdot 93H_2O$	$Ca_{2,02}AI_{4,10}Si_{12,00}O_{32,17} \cdot 10.12H_2O$	$Mg_{0,31}Sr_{0.04}Ca_{0,35}Ba_{0,01}Na_{3.98}K_{0.18}Al_{5,80}Fe_{0,01}Si_{10,25}O_{32}\cdot 12H_2O$	$Ca_{0,905}K_{0.06}Na_{0.025}Sr_{0.005}Al_{1.87}Si_{2.115}O_8\cdot 4.5H_2O$	$Na_{4, 28}Zn_{1.88}Si_{6,99}O_{18} \cdot 5H_2O$	$K_{2.96}Ca_{2.04}Na_{1.02}Mg_{0.01}Al_{8.03}Si_{7.97}O_{31.97} \cdot 11.72H_2O$	$Ca_{1.73}Na_{0.13}Fe_{0.41}Mn_{0.31}Mg_{0.02}Si_{4.22}Al_{0.50}Be_{2.28}O_{13}(OH)_2 \cdot 2H_2O$	$H_{0.35}(NH_4)_{2.74}Mg_{1.07}Na_{0.21}AI_{5.44}Si_{30.56}O_{72}\cdot 21.55H_2O.$			Na1.32K1.57Mg1.09Al5.03Fe0.01Si30.95O72.01 · 18.82H2O	K _{0.51} Na _{0.25} Ca _{0.99} Mg _{2.98} Al _{7.25} Fe _{1.20} Si _{27.50} O ₇₂ · 23.12H ₂ O	$Ca_{0.95}Mg_{0.22}Na_{1.04}K_{0.02}Al_{3.4}Si_{8.6}O_{24} \cdot 16H_2O$	$Ca_{1.61}Mg_{0.61}K_{2.06}Na_{1.77}AI_{8.70}Si_{26.74}O_{70.65} \cdot 27.2H_2O$	$Ca_{1.76}Mg_{0.48}K_{2.21}Na_{2.26}Al_{8.95}Si_{27,00}O_{71.9} \cdot 27.2H_2O$	K _{1.56} Na _{0.96} Mg _{0.84} Ca _{2.28} Al _{8.94} Si _{27.30} O ₇₂ ·31.20H ₂ O	Na1 01K2 84Mg0 3 Ca1 69 Als 18 Si27 84072 · 28.51H20	Mg0.76Fe0.04Ca0.32Na3.98K2.44Ti0.04Mn0.02Al7.12Fe0.48Si28.40O72.62 · 22.8H2O	Mg0. 34Ca0.66Na3.16K2.58Ti0.04Al7.34Fe0.46Si28.20O72.02Cl0.02F0.08 · 23.6H2O	Mg0.18Fe0.02Ca0.10Na5.52K1.98Ti0.06Mn0.02Al7.48Fe0.52Si27.98P0.02O72.18 · 24.4H2O	$Mg_{0.82}Ca_{1.36}Na_{0.58}K_{2.94}Ti_{0.04}AI_{7.94}Fe_{0.14}Si_{27.90}P_{0.02}O_{71.98}CI_{0.02}F_{0.02}\cdot 26.2H_{2}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00}O_{1.00$	Mg _{0.10} Na _{5.38} K _{2.18} Ti _{0.02} Al _{7.84} Fe _{0.26} Si _{27.90} O _{71.88} F _{0.02} · 23.8H ₂ O	Mg _{0.48} Fe _{0.04} Ca _{0.48} Na _{2.76} K _{2.90} Ti _{0.06} Al _{7.58} Fe _{0.76} Si _{27.66} O _{71.78} F _{0.02} · 23.6H ₂ O	$Mg_{0.10}Fe_{0.08}Na_{5.80}K_{2.50}Ti_{0.12}Mn_{0.12}Al_{7.86}Fe_{0.70}Si_{27.42}P_{0.02}O_{72.40} \cdot 24.4H_2O$	$Mg_{0.78}Ca_{1.48}Na_{1.34}K_{2.06}Al_{8.74}Si_{27.26}O_{71.60} \cdot 27.8H_2O$	Mg _{0.86} Ca _{2.26} Na _{0.96} K _{1.54} Al _{8.80} Fe _{0.38} Si _{26.82} O _{71.78} · 31.2H ₂ O	Ba _{0,835} Al _{2,145} Si _{2,97} O _{10,40} · 3.34H ₂ O	composition ^a	Chem.	
1.483	1.504	1.494	1.504	1.516	1.496	1.507	1.488	1.498		1.513	1.509	1.515	1.509	1.509	1.499	1.508	1.484	1.498	1.492	1.538	1.522	1.513	1.591	1.520			1.484	1.490	1.466	1.470	1.473	1.479	1.469	1.462	1.465	1.464	1.468	1.459	1.465	1.465	1.469	1.478	1.545		< <i>n</i> > ^b	
2785.2	1765.1	1997.7	2239.9	1843.0	1181.4	1181.9	1178.6	1173.9		1346.7	1352.7	1361.8	2181.4	2102.0	2104.0	999.2	7826.0	934.3	1007.4	261.3	524.5	1014.1	332.92	2024.0			2032.84	2085.9	934.75	2302.34	2274.01	2295.4	2267.1	2274.4	2274.0	2275.5	2278.6	2276.6	2282.1	2281.9	2297.4	2295.5	299.97	(Å ³ ) ^c	$V_{\rm m}$	
224.487	148.500	164.712	188.446	158.767	97.804	100.030	95.987	865.76		115.332	114.940	117.085	185.352	178.609	175.241	84.735	632.092	77.662	82.722	23.473	45.711	86.850	32.848	175.717			164.189	170.580	72.663	180.527	179.455	183.463	177.381	175.268	176.388	176.120	177.897	174.286	177.016	177.000	179.752	183.084	27.398	(Å ³ ) ^d	aobs	
30.1	10.25	22.74	28.03	17.48	17.4	16.66	16.14	16.98		14.07	13.93	17.10	25	21.75	26.1	12.69	93	10.12	12	4.5	S	11.72	2	21.55			18.82	23.12	16	27.2	27.2	31.20	28.51	22.8	23.6	24.4	26.2	23.8	23.6	24.4	27.8	31.2	3.34	(obs) ^e	$n_w$	
34.6	13.5	24.24	33.0	19.19	16.8	18.6	16.3	17.4	i	13.7	13.2	15.1	30.2	23.4	23.7	12.6	84.7	10.3	13.4	4.7	5.5	12.7	1.7	25.8			20.1	20.3	16.8	28.7	26.3	29.1	25.0	22.4	23.7	24.6	25.1	23.4	23.5	22.6	27.3	28.2	3.58	(calc) [†]	$n_w$	
0.87	0.76	0.94	0.85	0.91	1.04	0.90	0.99	0.98	0	1.03	1.06	1.13	0.83	0.93	1.10	1.01	1.10	0.98	0.90	0.96	0.91	0.92	1.18	0.84			0.94	1.14	0.95	0.95	1.03	1.07	1.14	1.02	1.00	0.99	1.04	1.02	1.00	1.08	1.02	1.11	0.93	$n_w (calc)^g$	$n_w$ (obs)/	
Reay and Coombs (1971)	Rouse et al. (1990)	Passaglia et al. (1977)	Galli et al. (1974)	Men'shikov et al. (1973)	Tiba and Matsubara (1977)	Passaglia et al. (1974)	Passaglia et al. (1974)	Passagha et al. (1974)	Kiseleva et al. (1996b)	Kiseleva et al. (1996a) RI from	Kiseleva et al. (1996b)	Tomita et al. (1979)	Cerný and Povondra (1969)	$\tilde{L}$ arsen et al. (2005)	Merkle and Slaughter (1968)	Sahama and Lehtinen (1967)	Galli et al. (1996)	Dunn et al. (1980)	Nawaz and Malone (1982)	Vezzalini and Oberti (1984)	Ercit and van Velthuizen (1994)	Lengauer et al. (2009)	Grice et al. (2013)	Chukanov et al. (2019)	(1967)	lp from Alietti and Passaglia	Yajima and Nakamura (1971)	Alietti and Passagli (1967)	Wise (1982)	Staples and Gard (1959)	Deffeyes (1959)	Harada et al. (1967)	Gude and Sheppard (1981)	Sheppard and Gude (1969)	Sheppard and Gude (1969)	Sheppard and Gude (1969)	Sheppard and Gude (1969)	Sheppard and Gude (1969)	Sheppard and Gude (1969)	Sheppard and Gude (1969)	Sheppard and Gude (1969)	Sheppard and Gude (1969)	Hey and Bannister (1934)		References ^h	

led
atint
Co
÷
Table

No.	Zeolite name	Chem. composition ^a	q <i>⊲u</i> >	$V_{m}^{V_{m}}$ $(Å^{3})^{c}$	$\substack{\alpha_{obs}\\ ({ m \AA}^3)^{d}}$	$n_w$ (obs) ^e	$n_w$ (calc) ^f	$n_w (obs)/$ $n_w (calc)^g$	References ^h
87	Natrolite	$ m Na_{1,80}K_{0.04}Ca_{0.02}Al_{2.05}Si_{2.98}O_{10}\cdot 2H_{2}O$	1.484	281.0	22.697	0	2.2	0.91	
88	Natrolite	$Ca_{0.18}Na_{1.75}Al_{2.03}Si_{2.95}O_{10} \cdot 2.10H_{2}O_{10}$	1.482	280.7	22.575	2.10	1.97	1.07	Cortesogno et al. (1975)
89	Natrolite	$Ca_{0.04}K_{0.03}Na_{1.82}Al_{2.05}Si_{2.98}O_{10} \cdot 2.01H_{2}O_{10}$	1.484	281.9	22.769	2.01	2.19	0.92	Hey and Bannister (1932a)
90	Natrolite	Can not Nay 014 Kn not Tin not Fen not All 016 Sig net O in 065 · 2.09H2O	1.483	280.95	22.645	2.09	2.06	1.01	Chen and Chao (1980)
91	Offretite	Mgn 72 Cat nk Nan 47 K1 11 Als 17 Si12 83 036 • 15.2H50	1.488	1159.9	94.464	15.2	15.9	0.96	Sheppard and Gude (1969)
92	Pahasanaite	Cas s Litt 6K1 2 Nan 2 Bent P24 One 38H50	1.523	2617.2	228.533	38	34.5	1.10	Rouse et al. (1987)
63	Parthéite	Can on Nan or Ali no Si 4 40 0 5 4 4 90 5 5 5 5 5 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5	1.552	441.0	40.648	4	5.0	0.80	Sam et al. (1979)
64	Paulingite	Car 27B1 10(10414).06 114,20 014,40 016 11112 0 Car 27B1 10(K1 100 Nat 10 11 22 Sint 2001 1 27H20	1 487	908026	017.813	+ <i>C</i>	33.5	0.00	Jengalier et al (1907)
4 4	I aumgue Dadiali4a	Ca2.5/Dat.39x2.28tha0.38ch11.553430.59084 * Z11120	1 105	200.0012	CT0./17	12 2	200	19:0	Mon'shiton (1994)
с ,	Pernante	K9.071Na0.91 Ca0.49510.46Fe0.08A111.35Fe0.33IM 20.052124.27U72.12 · 15.2H2U	C 04. 1	C.C222	119.902	7.01	C.U2	0./4	Men cnikov (1984)
96	Phillipsite	K1.58Na1.36Ca1.36Al5.62Fe0.16S110.24O32 · 12.78H2O	1.485	1008.41	81.617	12.78	I.1	1.15	Harada et al. (1967)
97	Phillipsite	Mg _{0.01} Ca _{1.79} Sr _{0.03} Na _{0.63} K _{2.28} Al _{6.37} Fe _{0.02} Si _{9.57} O ₃₂ · 12.87H ₂ O	1.506	1020.85	86.228	12.87	13.4	0.96	Galli and Loschi Ghittoni (1972)
98	Phillipsite	$Mg_{0.02}Ca_{0.66}Sr_{0.01}Ba_{0.01}Na_{1.05}K_{3.56}Al_{6.18}Fe_{0.01}Si_{9.86}O_{32}\cdot 11.51H_2O$	1.494	1024.8	84.495	11.51	12.2	0.94	Galli and Loschi Ghittoni (1972)
66	Phillipsite	$Mg_{0.01}Ca_{2.09}Sr_{0.04}Ba_{0.01}Na_{0.29}K_{1.99}Al_{6.45}Fe_{0.01}Si_{9.51}O_{32}\cdot 13.54H_2O$	1.504	1014.4	85.339	13.54	12.9	1.05	Galli and Loschi Ghittoni (1972)
100	Phillipsite	$Mg_{0.01}Ca_{1.97}Sr_{0.03}Ba_{0.01}Na_{0.42}K_{2.40}Al_{6.37}Fe_{0.01}Si_{9.51}O_{32} \cdot 13.09H_2O$	1.504	1020.15	85.827	13.09	13.0	1.01	Galli and Loschi Ghittoni (1972)
101	Phillipsite	$Mg_{0.01}Ca_{2.02}Sr_{0.04}Ba_{0.03}Na_{0.45}K_{1.91}AI_{6.83}Fe_{0.02}Si_{9.22}O_{32} \cdot 13.91H_2O$	1.504	1014.9	85.385	13.91	12.9	1.08	Galli and Loschi Ghittoni (1972)
102	Phillipsite	$Mg_{0.03}Ca_{0.26}Sr_{0.01}Ba_{0.01}Na_{4.18}K_{0.68}Al_{5.64}Fe_{0.01}Si_{10.41}O_{32} \cdot 13.67H_2O$	1.494	1017.6	83.898	13.67	13.9	0.98	Galli and Loschi Ghittoni (1972)
103	Phillipsite	Mg0.02Ca0.64Sr0.01Ba0.03Na3.35K0.93Al5.66Fe0.01Si10.33O32 · 12.41H2O	1.498	1017.6	84.586	12.41	14.0	0.89	Galli and Loschi Ghittoni (1972)
104	Phillipsite	$Mg_{0.01}Ca_{0.41}Ba_{0.01}Na_{4.19}K_{0.89}Al_{5.66}Fe_{0.01}Si_{10.27}O_{32} \cdot 12.25H_2O$	1.498	1018.7	84.673	12.25	14.2	0.86	Galli and Loschi Ghittoni (1972)
105	Phillipsite	Mg0.01 Ca1.34Sr0.01 Ba0.05Na1.00K1.87A15.79Fe0.01Si10.24O32 · 12.06H2O	1.499	1013.5	84.416	12.06	13.0	0.93	Galli and Loschi Ghittoni (1972)
106	Phillipsite	$Mg_{0.01}Ca_{0.54}Ba_{0.02}Na_{3.56}K_{0.93}AI_{5.38}Fe_{0.01}Si_{10.55}O_{32}\cdot 12.82H_2O$	1.496	1017.3	84.215	12.82	13.9	0.92	Galli and Loschi Ghittoni (1972)
107	Phillipsite	$Mg_{0.02}Ca_{0.51}Ba_{0.01}Na_{1.40}K_{3.79}Al_{6.56}Fe_{0.01}Si_{9.50}O_{32} \cdot 13.49H_2O$	1.502	1025.8	85.957	13.49	13.0	1.04	Galli and Loschi Ghittoni (1972)
108	Phillipsite	$Mg_{0,03}Ca_{1.48}Sr_{0,01}Ba_{0,10}Na_{0,21}K_{0,68}Al_{4,13}Fe_{0,03}Si_{11,85}O_{32} \cdot 12.85H_2O$	1.500	1007.4	84.073	12.85	14.1	0.91	Galli and Loschi Ghittoni (1972)
109	Phillipsite	Mg0.04Ca1.46Sr0.02Ba0.10Na0.43K1.13A14.87Fe0.04Si11.13O32 · 13.41H2O	1.500	1015.9	84.782	13.41	13.9	0.96	Galli and Loschi Ghittoni (1972)
110	Phillipsite	$Mg_{0,07}Ca_{1,16}Sr_{0,01}Ba_{0,05}Na_{0,18}K_{1,85}A1_{4,58}Fe_{0,02}Si_{11,40}O_{32} \cdot 12.30H_2O$	1.490	1010.5	82.637	12.30	12.5	0.98	Galli and Loschi Ghittoni (1972)
111	Phillipsite	$Mg_{0.03}Ca_{1.82}Sr_{0.01}Ba_{0.03}Na_{0.08}K_{1.83}Al_{5.63}Fe_{0.02}Si_{10.34}O_{32}\cdot 12.87H_2O$	1.502	1010.4	84.667	12.87	13.1	0.98	Galli and Loschi Ghittoni (1972)
112	Phillipsite	$Mg_{0.01}Ca_{2.12}Na_{0.20}K_{1.80}Al_{6.19}Fe_{0.04}Si_{9.76}O_{32} \cdot 12.93H_2O$	1.508	1012.3	85.842	12.93	13.4	0.96	Galli and Loschi Ghittoni (1972)
113	Phillipsite	$Mg_{0.01}Ca_{1.25}Sr_{0.01}Na_{0.57}K_{1.71}Al_{5.04}Fe_{0.01}Si_{11.01}O_{32} \cdot 12.67H_2O$	1.503	1014.1	85.147	12.67	14.1	0.90	Galli and Loschi Ghittoni (1972)
114	Phillipsite	$Mg_{0.01}Ca_{1.75}Sr_{0.01}Ba_{0.06}Na_{0.17}K_{1.86}Al_{5.74}Fe_{0.01}Si_{10.27}O_{32} \cdot 12.57H_{2}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}O_{10.27}$	1.507	1010.2	85.494	12.57	13.6	0.92	Galli and Loschi Ghittoni (1972)
115	Phillipsite	$Mg_{0.01}Ca_{1.77}Na_{0.16}K_{1.87}Al_{5.77}Fe_{0.01}Si_{10.27}O_{32} \cdot 12.28H_2O$	1.503	1010.8	84.866	12.28	13.3	0.92	Galli and Loschi Ghittoni (1972)
116	Phillipsite	$Mg_{0.01}Ca_{1.84}Sr_{0.01}Ba_{0.08}Na_{0.16}K_{1.94}Al_{5.75}Fe_{0.01}Si_{10.19}O_{32} \cdot 12.27H_{2}O$	1.509	1007.7	85.625	12.27	13.5	0.91	Galli and Loschi Ghittoni (1972)
117	Phillipsite	$Mg_{0.01}Ca_{0.91}Na_{0.74}K_{1.83}Al_{5.65}Si_{10.41}O_{32} \cdot 12.25H_{2}O$	1.498	1015.6	84.416	12.25	13.8	0.89	Galli and Loschi Ghittoni (1972)
118	Phillipsite	$Mg_{0.01}Ca_{2.01}Na_{0.09}K_{1.55}Al_{6.69}Fe_{0.02}Si_{9.30}O_{32} \cdot 13.78H_2O$	1.508	1013.85	85.978	13.78	13.9	0.99	Galli and Loschi Ghittoni (1972)
119	Phillipsite	$Mg_{0.01}Ca_{1.60}Na_{0.13}Ba_{0.38}K_{0.71}AI_{5.00}Fe_{0.03}Si_{11.02}O_{32} \cdot 12.97H_2O$	1.502	1011.3	84.738	12.97	13.7	0.95	Galli and Loschi Ghittoni (1972)
120	Pollucite	$Na_{0.357}Cs_{0.445}K_{0.009}Li_{0.015}Ca_{0.004}Al_{0.861}Si_{2.127}O_{6}\cdot 0.54H_{2}O$	1.507	158.61	13.424	0.54	0.60	0.90	Černý (1974)
121	Pollucite	$Na_{0,181}Cs_{0,551}Rb_{0,017}K_{0,103}Li_{0,028}Ca_{0,001}Al_{0,937}Si_{2,061}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.41H_{2}O_{6}\cdot0.4$	1.520	159.80	13.873	0.41	0.61	0.67	Černý (1974)
122	Pollucite	$ m Na_{0,182}Cs_{0,658}K_{0,036}Al_{0,924}Si_{2,088}O_{6} \cdot 0.31H_{2}O_{6}$	1.520	158.96	13.800	0.31	0.43	0.72	Černý (1974)
123	Pollucite	$Na_{0,163}Cs_{0,747}Rb_{0,031}K_{0.004}Li_{0.010}Al_{0.851}Si_{2,140}O_{6}\cdot 0.23H_{2}O_{6}$	1.520	159.31	13.831	0.23	0.26	0.88	Černý (1974)
124	Pollucite	$Na_{0.143}Cs_{0.628}Rb_{0.021}Li_{0.002}Mn_{0.001}Al_{0.944}Si_{2.071}O_{6} \cdot 0.29H_{2}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{100}O_{1$	1.517	160.29	13.835	0.29	0.52	0.56	Černý (1974)
125	Pollucite	$ m Na_{0.146}Cs_{0.722}K_{0.023}Ca_{0.001}Al_{0.909}Si_{2.092}O_{6}\cdot 0.25H_{2}O_{6}$	1.520	158.96	13.800	0.25	0.32	0.78	Černý (1974)
126	Pollucite	$ m Cs_{0.097} m Ca_{0.002} m Na_{0.760} m K_{0.019} m Al_{0.913} m Si_{2.087} m O_{5.984}\cdot 1.00 m H_{2} m O$	1.492	160.50	13.179	1.00	1.03	0.97	Černý (1972)
127	Roggianite	$Ca_{14,24}Sr_{0,01}Na_{0,37}K_{0.56}Be_{5,29}Al_{14,92}Si_{27,79}O_{89,96}(OH)_{16}\cdot 1H_2O$	1.530	3100.2	274.345	33.68	38.7	0.87	Passaglia and Vezzalini (1988) RI from
100	Contraito		1517	20200	002.10	00 0	2 00	1 00	Labougha (1707) Harrond Doministry (1026)
120	Scolecile	Cal. 0451N40.020 No.004 AU2.005 SI 2.966 OL 10.025 · 2.99 H2 O	/10.1	12.002	24.709 27.681	2.79 206	00.0	1.00	Hey and Bannister (1930) Hey and Bannister (1036)
120	Scolectic	$Ca(0.3631 a 1, 400 rst 2, 138 3 r 2.863 \cup 10.036 \cdot 2.00112 \cup 0.026 \cdot 2.00112 \cdot 2.0$	1 500	20.007	100.22	00.7 7	1 00	1.00	Hey and Domister (1936)
121	Scolecile	Ca0.038L1[.875A12.188.312.900U[0.060 * 2.04H2U Can are MIH () and Albert Sin and are 10 58H2O	1 517	21.002	77 646	40.7 85 c	06.1 7 07	CU.I 7.8 0	Hey and Bannister (1930) Hey and Bannister (1036)
121	Stollouite	Cal.975(1/1147/0.063/4/2.163/4/2.163/9/97/11/2/0.977)	1 402	40.007 552 2	15 570	00.7 2012	10.7	0.00	Coll: and Damactic (1930)
133	Stellente Tetranatrolite	C40.945/M20.0085010.0031N40.043/N0.035/M1.983F60.015207.005/U18 · 7.05/H2/ Cao 445/M3- 544/Ko 227/Tio 645/Feo 604 Alla 525 (Site 1270) 40 252 · 9 44H5/O	1.495 1.486	د.ددد 1125 86	120.04	cU./ 44 0	8 89	0.98	Galli and Fassagna (1973) Chen and Chao (1980)
		07111117 7071040711711087877117470104171010117776704444077m171470m0	001-1	00.0711	04040	Ę	0.0	001	

Effen	0.51	27.4	14.01	166.235	1975.9	1.504	$Ca_{5.60} Sr_{1.04} K_{0.70} Ba_{0.30} Cu_{2.90} Fe_{0.09} Al_{11.85} Si_{12.06} O_{48} (OH)_{8.44} \cdot 14.01 H_2 O$	Tschörtnerite	149
Ċerný	0.34	0.61	0.21	13.947	159.72	1.523	$Cs_{0.630}Na_{0.114}Li_{0.053}Rb_{0.020}K_{0.006}Ca_{0.003}Mg_{0.003}Al_{0.856}Si_{2.151}O_6 \cdot 0.21H_2O$	Pollucite	148
Černý	0.51	0.53	0.27	13.866	159.72	1.520	$Cs_{0.629}Na_{0.156}Li_{0.079}Rb_{0.022}K_{0.009}Al_{0.884}Si_{2.112}O_{6}\cdot 0.27H_{2}O$	Pollucite	147
Černý	0.58	0.57	0.33	13.793	159.80	1.517	$\mathrm{Cs}_{0.589}\mathrm{Na}_{0.173}\mathrm{Li}_{0.051}\mathrm{Rb}_{0.022}\mathrm{K}_{0.010}\mathrm{Ca}_{0.002}\mathrm{Al}_{0.836}\mathrm{Si}_{2.161}\mathrm{O}_{6}\cdot0.33\mathrm{H}_{2}\mathrm{O}$	Pollucite	146
¢	1.62	28.8	46.7	213.285	2702.7	1.473	Ca _{3.92} Ba _{0.33} K _{6.54} Na _{1.31} Al _{5.23} Si _{36.99} O ₈₄ · 46.7H ₂ O	Paulingite	
Kamb	1.83	27.4	50.1	213.285	2702.7	1.473	$\mathrm{Ca}_{4,20}\mathrm{Ba}_{0,35}\mathrm{K}_{7,00}\mathrm{Na}_{1,40}\mathrm{AI}_{5,60}\mathrm{Si}_{36,40}\mathrm{O}_{84}\cdot 50.1\mathrm{H}_{2}\mathrm{O}$	Paulingite	145
Eberlei	0.98	4.01	3.93	36.562	440.8	1.497	$Mg_{0.007}Ca_{0.889}Sr_{0.012}Na_{0.013}K_{0.007}Al_{2.004}Fe_{0.004}Si_{5.993}O_{15.917}\cdot 3.93H_{2}O$	Yugawaralite	144
Pongilu	1.03	4.06	4.20	36.686	441.35	1.498	$Mg_{0.01}Ca_{0.88}Na_{0.02}AI_{1.94}Si_{6.09}O_{16} \cdot 4.20H_2O$	Yugawaralite	143
Peacor	0.91	5.98	5.43	34.447	403.8	1.511	$K_{0.90}Ca_{1.01}Al_{2.93}Si_{3.08}O_{12} \cdot 5.43H_2O$	Willhendersonite	142
Walter (	1.08	3.7	4	24.161	276.7	1.523	$Ca_{0.99}Be_{3.02}P_{1.97}O_{7.88}(OH)_{2.11} \cdot 4H_2O$	Weinebeneite	141
Seki and	1.15	1.98	2.27	26.378	316.7	1.499	$Mg_{0.005}Ca_{0.658}Na_{0.594}K_{0.014}Al_{1.800}$ Fe $_{0.025}Si_{4.166}O_{12.037} \cdot 2.27H_2O$	Wairakite	140
Boggs e	1.14	7.01	7.96	41.818	518.8	1.483	$Ca_{0.97}Na_{0.05}Mg_{0.08}Al_{2.00}Fe_{0.02}Si_{5.95}O_{16} \cdot 7.96H_2O$	Tschernichite	139
Hey and	0.93	6.43	5.95	50.528	566.7	1.534	$Ca_{2.000}Na_{1.035}AI_{5.030}Si_{4.970}O_{20} \cdot 5.95H_2O$	Thomsonite	138
Hey and	0.84	6.56	5.48	49.809	565.0	1.528	$Ca_{1.005}Na_{2.710}AI_{4.615}Si_{5.355}O_{20} \cdot 5.48H_2O$	Thomsonite	137
Hey and	1.04	5.87	6.10	49.187	563.3	1.523	$Ca_{1.840}Na_{0.745}AI_{4.585}Si_{5.455}O_{20} \cdot 6.10H_2O$	Thomsonite	136
Hey and	1.17	5.41	6.34	48.483	565.0	1.514	$Ca_{1.620}Na_{1.475}AI_{4.520}Si_{5.430}O_{20} \cdot 6.34H_2O$	Thomsonite	135
Chen ar	1.00	9.00	9.00	90.947	1126.02	1.484	$Ca_{0.188}Na_{7.144}AI_{7.684}Si_{12.316}O_{39.916}\cdot 9.00H_2O$	Tetranatrolite	134
	$n_w (calc)^g$	(calc) ^f	(obs) ^e	(Å ³ ) ^d	(Å ³ ) ^c		composition ^a	name	
Refere	$n_w (obs)/$	$n_w$	$n_w$	$\alpha_{\rm obs}$	$V_{\rm m}$	<12	Chem.	Zeolite	No.

Table 1. Continued

important classes of hydrous minerals and because we used mean electronic polarizability for the calculation of their total polarizabilities in contrast to the non-zeolitic minerals, where the total polarizabilities are calculated from electronic polarizabilities of cations with specific coordination numbers (CNs). Whereas the cation coordination is known for most of the non-zeolitic minerals, it is not clearly determined for most of the zeolite species where the chemical composition and the refractive indices have been determined but not the crystal structure. Therefore, Table 1 lists the results on 149 zeolites obtained with mean electronic polarizabilities, and Table S1 in the Supplement lists the results on 770 non-zeolitic minerals and synthetic compounds based on electronic polarizabilities taken from Table 4 in Shannon and Fischer (2016) for specific coordination numbers of cations. For the zeolites, the mean electronic polarizabilities of a cation in a certain oxidation state is calculated as the average of all cations of the same kind with different coordination numbers weighted by the number of entries used to determine the polarizability (see Table 4 in Shannon and Fischer, 2016). The mean values are listed in Table 2. They are internally stored in POLARIO (Fischer et al., 2018) used to calculate the water content of zeolites in Table 1. Zeolite entries are selected if they belong to one of the 237 types listed in the Database of Zeolite Structures of the International Zeolite Association (Baerlocher and McCusker, 2019). Thus, it also contains minerals like cancrinite which are not considered to be zeolite minerals but topologically have a zeolite-type framework. Only those entries are included in Table 1 where the optical data, the chemical composition, and the unit-cell parameters are available for the same specimen. There are a few exceptions where it was clear that the data from different publications can be assigned to the same crystal. We were aiming for a dataset large enough to have a representative selection and not necessarily for completeness.

All entries in Table 1 conform to the criteria listed above. However, the entries at the end of Table 1 (no. 145 to 149) show unusual deviations between observed and calculated H₂O content which are assumed to be due to uncertainties in the chemical composition. Zeolites and zeolite-type compounds having occluded anionic or neutral species also show high deviations and are listed separately in Table 3. Details are discussed below. Not considered in this compilation of hydrous minerals are compounds containing elements where the electronic polarizabilities have not been determined in Shannon and Fischer (2016). These are, for example, cations with lone-pair electrons (Tl⁺, Sn²⁺, Pb²⁺,  $As^{3+}$ ,  $Sb^{3+}$ ,  $Bi^{3+}$ ,  $S^{4+}$ ,  $Se^{4+}$ ,  $Te^{4+}$ ,  $Cl^{5+}$ ,  $Br^{5+}$ , and  $I^{5+}$ ) which do not fit the simple scheme of additivity. Also excluded from the compilation are compounds with sterically strained structures (Gagné et al., 2018) and some compounds with corner-shared or edge-shared octahedral networks (see Shannon and Fischer, 2016; Shannon et al., 2017) showing

program POLARIO (Fischer et al., 2018). ^g Factor relating the calculated to the observed H₂O content. ^h Ip is lattice parameters, and RI is refractive index. ⁱ Chabazite with composition Na_{0.08}K_{0.42}Ca_{0.84}M_{20.29}Sr_{0.03}Ba_{0.09}Al_{3.17}Fe_{0.08}Si_{8.81}O₂₄ · 10.84H₂O was omitted because of Fe₂O₃ impurities (Passaglia, 1970).

systematic deviations between observed and calculated polarizabilities.

# 4 Example

The approach used here is demonstrated in the example of synthetic analcime (entry 2 in Table 1) having the chemical composition  $Na_{0.9}Al_{0.9}Si_{2.1}O_6 \cdot 1.1H_2O$ , with data from sample 1 in Table 1 of Černý (1974). The following steps are taken to determine the water content from the refractive indices.

- 1. The observed total electronic polarizability  $\alpha_{obs}$  is calculated using Eq. (1) with  $V_m = 160.71 \text{ Å}^3$  (unit-cell volume from Table 1 in Černý, 1974,  $V = 2571.35 \text{ Å}^3$ , divided by the number of formula units, Z = 16) and isotropic n = 1.486, yielding  $\alpha_{obs} = 13.034 \text{ Å}^3$ .
- 2. The calculated total electronic polarizability  $\alpha_{calc}$  of the anhydrous part of the chemical composition is calculated using the additivity rule with the individual electronic polarizabilities of ions from Shannon and Fischer (2016). Because the coordination number (CN) of Na is not determined in analcime (Černý, 1974), a mean value for Na with different CNs is used calculated according to  $\alpha$ (Na) =  $(17 \cdot 0.760 + 27 \cdot 0.650 +$  $207 \cdot 0.560 + 97 \cdot 0.490 + 197 \cdot 0.430 + 49 \cdot 0.380 + 25 \cdot$  $0.340 + 5 \cdot 0.300 + 9 \cdot 0.270)/633 = 0.489 \text{ Å}^3$ , with values taken from Table 4 in Shannon and Fischer (2016). For the framework atoms Al and Si, the respective values for CN = 4 are used. Electronic polarizabilities and the mean values are internally stored in the program POLARIO (Fischer et al., 2018), which is used for all calculations. Thus,  $\alpha_{calc}(anhydrous) = 0.9 \cdot \alpha(Na)$  $+0.9 \cdot \alpha(Al) + 2.1 \cdot \alpha(Si) + 6 \cdot \alpha(O) = 0.9 \cdot 0.489 + 0.9 \cdot$  $0.533 + 2.1 \cdot 0.284 + 6 \cdot 1.688 = 11.439 \text{ Å}^3$ , where  $\alpha(O)$ is calculated using Eq. (3), with  $\alpha_{-}^{o} = 1.79 \text{ Å}^{3}$  and N =1.776 Å³ taken from Table 5 in Shannon and Fischer (2016) and  $V_{\rm an} = V_{\rm m}/6 = 26.79 \,\text{\AA}^3$ .
- 3. The difference  $\alpha_{obs} \alpha_{calc} = 1.595 \text{ Å}^3$  represents the contribution of H₂O to the total electronic polarizability. The individual electronic polarizability of H₂O taken from Table 5 in Shannon and Fischer (2016) is  $\alpha$ (H₂O) = 1.62 Å³. However, the simple determination of the number of H₂O molecules  $n_w$  pfu according to  $n_w = 1.595/1.62 = 0.98$  is not correct because  $n_w$  adds to the anion volume ( $V_{an} = V(O) + V(H_2O) = V_m/(n_O + n_w)$  and thus contributes to the polarizability of the anhydrous part as well as that expressed in Eq. (4). Only the solution of Eq. (4) solved for  $n_w$  yields the correct value. This is done numerically in POLARIO, yielding 1.09 H₂O molecules pfu, which compares well with the observed 1.100 molecules determined in Černý (1974).

Alternatively, the H₂O content could be calculated using the Gladstone–Dale approach after Mandarino (1976), where the refractive index *n* is calculated from  $n = K_c \cdot D + 1$  with  $K_c = \sum_i \frac{k_i p_i}{100}$  and where  $k_i$  values are Gladstone–Dale constants,  $p_i$  values are weight percentages, and *D* is the density (see also Shannon and Fischer, 2016). For the example of analcime, the resulting number of H₂O molecules would be 0.89 H₂O per formula unit using Gladstone–Dale constants from Mandarino (1981) and Eggleton (1991). A detailed comparison between our polarizability approach and the Gladstone–Dale concept will be published in a followup paper.

# 5 Comparison between observed and calculated H₂O content in hydrous minerals

As mentioned above, the group of zeolite minerals was studied separately using *mean* electronic polarizabilities for the calculations. Figure 1 shows the water content calculated with Eq. (4) compared with the water content derived from analytical determinations as published in the respective references listed in Table 1. The factors relating the calculated to the observed values are shown in Fig. 2. It clearly demonstrates that the calculated values show a reasonable fit with the observed amount of H₂O, with factors  $f = n_w(\text{obs})/n_w(\text{calc})$  being close to 1. Outliers in Figs. 1 and 2 are mainly explained by uncertainties in the determination of chemical compositions and/or refractive indices.

In paulingite (145), something must be wrong in the chemical composition. The authors state the following: "The Al/Si ratio of 0.15 given by the analysis conflicts with the cation composition ... which requires an Al/Si ratio of 0.47. Either the analysis is internally inconsistent, or else anions must be present outside the tectosilicate framework" (Kamb and Oke, 1960). The composition given in Table 1 is scaled to 42 framework cations and fixed to 84 O atoms corresponding to a factor of 3.5 relative to the original composition given in Kamb and Oke (1960), whereas 89.95 O atoms would be needed for charge compensation, which, however, does not represent a TO₂ framework. Alternatively, in the second line 145 in Table 1 the non-oxygen content is scaled down to achieve charge balance. Then the factor relating calculated and observed H₂O content changes from 1.83 to 1.62, which is lower but still rather high. In later work, Lengauer et al. (1997) investigated paulingite (94) with a different composition with 27 H₂O molecules derived from thermogravimetric analysis (TGA) and 33.5 H₂O calculated from the refractive index, yielding a factor of 0.81. The misfits for pollucite (146-148) might be due to errors in the chemical composition and/or the determination of the H₂O content. According to Beger (1969) the sum of  $Cs + H_2O$  should be equal to 1, whereas it is 0.34, for example, in pollucite (148). In tschörtnerite (149), "A quantitative determination



Figure 1. Histogram of observed (blue) and calculated (red) water content. Entries 145 to 149 are omitted (see text for explanation). The two entries with  $H_2O$  content > 50 (8 – boggsite; 69 – gottardiite) are not shown.

of  $H_2O/OH$  was not possible because of the small amount of material available" (Effenberger et al., 1998). A number of 14 molecules pfu was calculated by difference from electron microprobe analyses (EMPAs), and 20  $H_2O$  were determined from the crystal-structure analysis. A loss of  $H_2O$  is assumed due to the high-vacuum measuring conditions in the EMPA: "A part of the total amount of  $H_2O$  is given as OH in order to achieve charge balance" (Effenberger et al., 1998). In total, this yields high uncertainties concerning the real  $H_2O$  content in tschörtnerite. The authors assume an  $H_2O$  content  $\geq 20$ , which is much closer to the amount of 27.4 molecules calculated by us.

There are nine compounds listed in Table 3 containing anionic and/or neutral species (SO₃, SO₄, CO₂, or CO₃) oc-



Figure 2. Plot of factors relating calculated to observed amount of  $H_2O$  in zeolite-type minerals. The sequence from left to right follows the sequence of entries in Table 1. Entries 145 to 149 are omitted (see text for explanation).

**Table 2.** Electronic polarizabilities  $\alpha$  of cations from Table 4 in Shannon and Fischer (2016) averaged over different coordination numbers, including NH₄ and five H_xO_y species.

Cation	$\alpha ({\rm \AA}^3)$	Cation	$\alpha({\rm \AA}^3)$	Cation	$\alpha({\rm \AA}^3)$	Cation	$\alpha$ (Å ³ )
Ag ⁺	3.100	Fe ²⁺	2.036	Mg ²⁺	0.665	Si ⁴⁺	0.283
$Al^{3+}$	0.487	Fe ³⁺	3.854	Mn ²⁺	2.062	$Sm^{3+}$	3.579
As ⁵⁺	1.629	Ga ³⁺	1.641	Mn ³⁺	3.840	Sn ⁴⁺	2.910
$B^{3+}$	0.085	$Gd^{3+}$	3.516	Mo ⁶⁺	4.512	Sr ²⁺	2.073
Ba ²⁺	3.285	Ge ⁴⁺	1.625	$N^{5+}$	0.001	Ta ⁵⁺	5.200
Be ²⁺	0.165	$H_3O^+$	1.450	Na ⁺	0.489	$Tb^{3+}$	3.269
$C^{4+}$	0.001	$H_3O_2^-$	2.670	Nb ⁵⁺	5.780	Te ⁶⁺	4.430
Ca ²⁺	1.616	$H_4O_4^{\overline{4}-}$	6.400	Nd ³⁺	3.796	Th ⁴⁺	4.395
$Cd^{2+}$	2.692	$H_5O_2^+$	3.100	NH ⁴⁺	3.180	Ti ³⁺	3.600
Ce ³⁺	3.916	$H_7O_4^{-}$	9.500	Ni ²⁺	1.710	Ti ⁴⁺	4.954
Ce ⁴⁺	7.157	$Hf^{4+}$	3.310	$P^{5+}$	0.036	Tm ³⁺	2.847
$Cl^{7+}$	0.007	$Hg^+$	7.000	Pr ³⁺	3.825	$U^{4+}$	5.000
$Co^{2+}$	1.725	Hg ²⁺	6.000	Pu ⁴⁺	4.300	$V^{3+}$	2.960
Cr ³⁺	3.020	Ho ³⁺	3.045	$Rb^+$	1.857	$V^{4+}$	2.627
Cr ⁶⁺	5.400	$I^{7+}$	3.075	Re ⁷⁺	3.200	$V^{5+}$	4.229
Cs ⁺	3.102	In ³⁺	2.520	Rh ³⁺	4.020	$W^{6+}$	3.879
Cu ²⁺	4.420	$K^+$	1.340	S ⁶⁺	0.011	$Y^{3+}$	2.757
Dy ³⁺	3.180	La ³⁺	4.057	$Sb^{5+}$	3.100	Yb ³⁺	2.799
Er ³⁺	3.027	Li ⁺	0.307	Sc ³⁺	2.308	$Zn^{2+}$	1.709
Eu ²⁺	3.875	Lu ³⁺	2.767	Se ⁶⁺	1.510	$Zr^{4+}$	4.103
Eu ³⁺	3.117						

cluded in the zeolite cavities. All these compounds show unusually high deviations between the observed and calculated amount of  $H_2O$ . It is apparent that these species in zeolites must be treated separately in our concept, with individual electronic polarizabilities deviating from other sulfates, sulfites, and carbonates. For liottite (156 in Table 3; Merlino and Orlandi, 1977b) the number of  $H_2O$  molecules was even calculated to be negative because the total polarizability of the anhydrous part of the compound was already higher than the corresponding observed value. However, it was shown in subsequent work by Ballirano et al. (1996) that it does not contain  $H_2O$ , which might confirm our findings in addition to the problem with the anionic species.

The mean value of the factor relating the calculated amount of  $H_2O$  to the observed one is more or less meaningless because high and low factors, each representing large errors, level each other out. More significant is the distribution of factors as shown in Fig. 3, where the bars in the histogram represent the frequency of occurrence of factors within a range of factors indicated on the horizontal axis. The mode is between 0.9 and 1.0, with 64 % of the factors between 0.9 and 1.1 and 86 % between 0.8 and 1.2.

R. X	K. Fischer	et al.:	Determin	ation of	fH ₂ O	content in	minerals
------	------------	---------	----------	----------	-------------------	------------	----------



**Figure 3.** Frequency of occurrence of the factors for the zeolite entries 1–144 listed in Table 1 and shown in Fig. 2. (a) Factors calculated from polarizability analysis using different electronic polarizabilities for cations with different coordination numbers (from Table 4 in Shannon and Fischer, 2016). (b) Factors calculated from polarizability analysis using mean electronic polarizabilities from Table 2.

The situation is similar for the non-zeolitic minerals listed in Table S1, with 770 entries. The factors relating the calculated number of H₂O molecules to the observed ones are plotted in Fig. 4, which shows a few outliers caused by inaccuracies in the chemical compositions, difficulties in the measurement of the refractive indices, or the observed H₂O content just estimated or calculated and not determined by thermal analyses. Lotharmeyerite (entry 675) shows the largest deviation from 1 in Fig. 4a and b because of uncertainties in the observed OH (partially disordered) and H₂O content (Yang et al., 2012). Because the majority of the entries show a reasonable fit with factors close to 1, we do not discuss here specific reasons for deviations. It should be noted that these factors are calculated irrespective of the precision of the number of molecules listed in the original publications. The number of H₂O molecules for the first 30 entries in Table S1, for example, is given in integral numbers by the authors but calculated with all decimal places. If the calculated values are rounded to integers, they correspond exactly to the observed numbers except chukhrovite (27), where 12 H₂O molecules are measured and 11.28 are calculated.

Thus, there are various sources of possible deviations. This might include rounded numbers, especially for low  $H_2O$  content, where a number of 1  $H_2O$  molecule could be anything between 0.5 and 1.5 and therefore might already represent an error of 50%. Other sources of errors are uncertainties in the chemical compositions, especially when they are based on energy-dispersive X-ray spectroscopy (EDX) analyses, estimated and not experimentally determined  $H_2O$  content, insufficient quality of crystals for accurate measurements of the refractive indices, and also errors in our empirically determined electronic polarizabilities of cations and anions (Shannon and Fischer, 2016), which are derived in least-squares procedures. The cumulation of such errors will be reflected by factors significantly deviating from 1. Despite these in-

157	156	155	154	153	152	151		150		No.
Marinellite	Liottite	Franzinite	Farneseite	Depmeierite	Carbobystrite	Cancrisilite		Cancrinite	name	Zeolite
$Na_{31.86}K_{11.13}Ca_{6.06}Al_{36.02}Si_{35.98}O_{144.6}(SO_4)_{8.12}Cl_{1.62}\cdot 3.41H_2O$	$Ca_{10.76}Na_{9.29}K_{3.82}Al_{17.66}Fe_{0.16}Si_{18.34}O_{72}(SO_4)_{3.91}(CO_3)_{1.72}Cl_{2.61}(OH)_{3.58} \cdot 1.83H_2O$	$Na_{21.53}K_{5.22}Ca_{12.50}Mg_{0.20}Fe_{0.08}Si_{31.32}Al_{28.68}O_{120}(SO_4)_{7.72}(CO_3)_{2.03}(OH)_{3.46}Cl_{0.59}\cdot 4.31H_2O_{120}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.72}(SO_4)_{7.7$	$Na_{36,43}K_{9,18}Ca_{8,75}Si_{42,50}Al_{41,50}O_{168}(SO_4)_{11,43}F_{0,16}Cl_{0,48} \cdot 3.03H_2O$	$Na_{7.58}K_{0.12}Si_{6.19}Al_{5.81}O_{24}(PO_4)_{0.47}(CO_3)_{0.22}(OH)_{0.02}(SO_4)_{0.01}\cdot 3.35H_2O$	$Na_{7,40}K_{0.38}AI_{6.04}Si_{6.02}O_{24}(CO_3) \cdot 3.5H_2O$	$Na_{6,70}K_{0.08}Ca_{0.09}Fe_{0.05}Mg_{0.03}Al_{4,79}Si_{7,21}O_{24,26}(CO_3)_{0.91} \cdot 3.20H_2O$		$Na_{6,89}Ca_{0,12}Mg_{0,03}K_{0,02}Si_{7,20}Al_{4,90}O_{24,02}(CO_3)_{1,10}(SO_4)_{0,04} \cdot 2.79H_2O$	composition	Chem.
1.496	1.529	1.511	1.500	1.496	1.496	1.503		1.503		<n></n>
4563.1	2298.2	3821.1	5315.54	729.4	718.5	699.1		699.10	(Å ³ )	$V_{\rm m}$
377.762	202.984	325.966	443.631	60.385	59.482	58.699		58.699	(Å ³ )	α _{obs}
3.41	1.83	4.31	3.03	3.35	3.5	3.20		2.79	(obs)	$n_w$
7.98	0	0.55	9.5	5.18	4.09	4.20		3.73	(calc)	nw
0.43	0.00	7.84	0.32	0.65	0.86	0.76		0.75	$n_w$ (calc)	nw (obs)/
Bonaccorsi and Orlandi (2003)	Merlino and Orlandi (1977b)	Merlino and Orlandi (1977a)	Cámara et al. (2005)	Pekov et al. (2011)	Khomyakov et al. (2010)	Khomyakov et al. (1991b)	in Jambor and Grew (1993)	Khomyakov et al. (1991a) cited		References

Table 3. Entries of zeolite-type compounds with occluded anionic species. Numbering continues to the sequence in Table 1.



Figure 4. Plot of factors relating calculated to observed amount of  $H_2O$  in non-zeolitic minerals. The sequence from left to right follows the sequence of entries in Table S1.

fluences, the data shown in Figs. 1 to 5 clearly show that there is on average a very good fit between the observed and calculated amount of H₂O. In general the best results are achieved using the individual electronic polarizabilities of cations with specific coordination numbers (Table 4 in Shannon and Fischer, 2016). However, mean polarizabilities (Table 2) yield results that are sufficiently accurate if the CN of cations has not been determined. This is shown in Fig. 4, comparing the two approaches yielding essentially similar results with a few outliers. Entries 55 (priceite), 110 (calcioancylite-Nd), and 432 (bassanite), for example, have factors much higher for mean polarizabilities, but entries 152 (milarite), 366 (Li₂SO₄ · H₂O), and 630 (martyite), for example, have factors closer to 1 as compared with the corresponding values from the individual polarizabilities. Generally we recommend verifying questionable results derived from mean polarizability with corresponding calculations using the CN-dependent polarizabilities.

# 6 Conclusions

The evaluation of 927 hydrous minerals and inorganic compounds showed that their  $H_2O$  content can be calculated from their mean refractive indices if the anhydrous part of the chemical composition is known. Thus, single crystals with



Figure 5. Frequency of occurrence of the factors for the non-zeolite entries listed in Table S1 and shown in Fig. 4. The three outliers with factors > 2 are omitted.

dimensions  $< 100 \,\mu$ m, usually used in X-ray diffraction analyses, can be used to determine the number of H₂O molecules per formula unit if higher amounts of the sample are not available for thermal analyses. Based on the excellent overall agreement between the observed and calculated H₂O contents of 157 zeolites and 770 other hydrates and the unusual deviations of paulingite, pollucite, tschörtnerite, liottite, and lotharmeyerite, we suggest that when strong disagreements

occur, the refractive index, composition, and/or crystal structure should be more carefully investigated.

*Code availability.* The program POLARIO (Fischer et al., 2018) calculates the mean refractive index from the chemical composition and the molar volume. It also determines the  $H_2O$  content of hydrous minerals from the anhydrous part of the chemical composition. The program can be downloaded free of charge from https://www.brass.uni-bremen.de/ (Fischer et al., 2018). Version 1.1 of the program was uploaded to the website on 23 October 2018.

*Supplement.* The supplement related to this article is available online at: https://doi.org/10.5194/ejm-32-27-2020-supplement.

*Author contributions.* RDS and RXF designed the research and calculated individual and mean electronic polarizabilities of cations and anions. All authors compiled the data presented in Table 1 and Table S1. RXF and MB did the calculations, and all authors contributed to the text of the paper.

*Competing interests.* The authors declare that they have no conflict of interest.

*Financial support.* This research has been supported by the Deutsche Forschungsgemeinschaft (grant no. FI442/21-2).

The article processing charges for this open-access publication were covered by the University of Bremen.

*Review statement.* This paper was edited by Etienne Balan and reviewed by Anthony Kampf and Diego Gatta.

# References

- Alberti, A.: Sodium-rich dachiardite from Alpe di Siusi, Italy, Contrib. Mineral. Petrol., 49, 63–66, 1975.
- Alberti, A. and Vezzalini, G.: The crystal structure of amicite, a zeolite, Acta Crystallogr. B, 35, 2866–2869, 1979.
- Alberti, A., Hentschel, G., and Vezzalini, G.: Amicite, a new natural zeolite, Neues Jb. Miner. Monat., 481–488, 1979.
- Alietti, A. and Passagli, E.: A new occurrence of ferrierite, Am. Mineral., 52, 1562–1563, 1967.
- Anderson, O. L.: Optical properties of rock-forming minerals derived from atomic properties, Fortschr. Mineral., 52, 611–629, 1975.
- Baerlocher, C. and McCusker, L. B.: Database of zeolite structures, available at: http://www.iza-structure.org/databases/, last access: August 2019.
- Ballirano, P., Merlino, S., Bonaccorsi, E., and Maras, A.: The crystal structure of liottite, a six-layer member of the cancrite group, Can. Mineral., 34, 1021–1030, 1996.

- Beger, R. M.: The crystal structure and chemical composition of pollucite, Z. Kristallogr., 129, 280–302, 1969.
- Boggs, R. C., Howard, D. G., Smith, J. V., and Klein G. L.: Tschernichite, a new zeolite from Goble, Columbia County, Oregon, Am. Mineral., 78, 822–826, 1993.
- Bonaccorsi, E. and Orlandi, P.: Marinellite, a new feldspathoid of the cancrinite-sodalite group, Eur. J. Mineral., 15, 1019–1027, https://doi.org/10.1127/0935-1221/2003/0015-1019, 2003.
- Bonardi, M., Roberts, A. C., Sabina, A. P., and Chao, G. Y.: Sodium rich dachiardite from the Francon Quarry, Montreal Island, Quebec, Can. Mineral., 19, 285–289, 1981.
- Cabella, R., Lucchetti, G., Palenzona, A., Quartieri, S., and Vezzalini, G.: First occurrence of a Ba-dominant brewsterite: structural features, Eur. J. Mineral., 5, 353–360, https://doi.org/10.1127/ejm/5/2/0353, 1993.
- Cámara, F., Bellatreccia, F., Della Ventura, G., and Mottana, A.: Farneseite, a new mineral of the cancrinite – sodalite group with a 14-layer stacking sequence: occurrence and crystal structure, Eur. J. Mineral., 17, 839–846, https://doi.org/10.1127/0935-1221/2005/0017-0839, 2005.
- Černý, P.: The Tanco pegmatite at Bernic Lake, Manitoba. VIII. Secondary minerals from the spodumene-rich zones, Can. Mineral., 11, 714–726, 1972.
- Černý, P.: The present status of the analcime-pollucite series, Can. Mineral., 12, 334–341, 1974.
- Černý, P. and Povondra, P.: A polycationic, strontian heulandite; comments on crystal chemistry and classification of heulandite and clinoptilolite, Neues Jb. Miner. Monat., 1969, 349–361, 1969.
- Černý, P. and Simpson, F. M.: The Tanco pegmatite at Bernic Lake, Manitoba X. pollucite, Can. Mineral., 16, 325–333, 1978.
- Chen, T. T. and Chao, G. Y.: Tetranatrolite from Mont St-Hilaire, Québec, Can. Mineral., 18, 77–84, 1980.
- Chukanov, N. V., Pekov, I. V., Sejkora, J., Plášil, J., Belakovskiy, D. I., and Britvin S. N.: Ferrierite-NH₄, (NH₄, Mg_{0.5})₅(Al₅Si₃₁O₇₂) · 22H₂O, a new zeolite from Northern Bohemia, Czech Republic, Can. Mineral., 57, 81–90, https://doi.org/10.3749/canmin.1800057, 2019.
- Coombs, D. S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J. D., Liebau, F., Mandarino, J. A., Minato, H., Nickel, E. H., Passaglia, E., Peacor, D. R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R. A., Tillmanns, E., and Vezzalini, G.: Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names, Eur. J. Mineral., 10, 1037–1081 https://doi.org/10.1127/ejm/10/5/1037, 1998.
- Cortesogno, L., Lucchetti, G., and Penco, A. M.: Associoazioni a Zeoliti nel "Gruppo di Voltri": Caratteristiche Mineralogiche e Significato Genetico, Soc. Italiana di Mineralogia e Petrologia – Rendiconti, 31, 673–710, 1975.
- Deffeyes, K. S.: Erionite from cenozoic tuffaceous sediments, Central Nevada, Am. Mineral., 44, 501–509, 1959.
- Dunn, P. J., Peacor, D. R., Newberry, N., and Ramik, R. A.: Goosecreekite, a new calcium aluminum silicate hydrate possibly related to brewsterite and epistilbite, Can. Mineral., 18, 323–327, 1980.

- Eberlein, G. D., Erd, R. C., Weber, F., and Beatty, L. B.: New occurrence of yugawaralite from the Chena Hot Springs Area, Alaska, Am. Mineral., 56, 1699–1717, 1971.
- Effenberger, H., Giester, G., Krause, W., and Bernhardt, H. J.: Tschörtnerite, a copper-bearing zeolite from the Bellberg volcano, Eifel, Germany, Am. Mineral., 83, 607–617, 1998.
- Eggleton, R. A.: Gladstone-Dale constants for the major elements in silicates: Coordination number, polarizability, and the Lorentz-Lorentz relation, Can. Mineral., 29, 525–532, 1991.
- Ercit, T. S. and van Velthuizen, J.: Gaultite, a new zeolite-like mineral species from Mont Saint-Hilaire, Quebec, and its crystal structure, Can. Mineral., 32, 855–863, 1994.
- Fischer, R. X., Burianek, M., and Shannon, R. D.: PO-LARIO, a computer program for calculating refractive indices from chemical compositions, Am. Mineral., 103, 1345–1348, https://doi.org/10.2138/am-2018-6587, 2018.
- Gagné, O., Hawthorne, F., Shannon, R. D., and Fischer, R. X.: Empirical electronic polarizabilities: deviations from the additivity rule. I.  $M^{2+}SO_4 \cdot nH_2O$ , blödite  $Na_2M^{2+}(SO_4)_2 \cdot 4H_2O$  and kieserite-related minerals with sterically strained structures, Phys. Chem. Miner., 45, 303–310, https://doi.org/10.1007/s00269-017-0919-9, 2018.
- Galli, E. and Gualtieri, A. F.: Direnzoite, [NaK₆MgCa₂(Al₁₃Si₄₇O₁₂₀) $\cdot$ 36H₂O], a new zeolite from Massif Central (France): Description and crystal structure, Am. Mineral., 93, 95–102, https://doi.org/10.2138/am.2008.2666, 2008.
- Galli, E. and Loschi Ghittoni, A. G.: The crystal chemistry of phillipsites, Am. Mineral., 57, 1125–1145, 1972.
- Galli, E. and Passaglia, E.: Stellerite from Villanova Monteleone, Sardinia, Lithos, 6, 83–90, 1973.
- Galli, E., Passaglia, E., Pongiluppi, D., and Rinaldi, R.: Mazzite, a new mineral, the natural counterpart of the synthetic Zeolite  $\Omega$ , Contrib. Mineral. Petr., 45, 99–105, 1974.
- Galli, E., Quartieri, S., Vezzalini, G., and Alberti, A.: Gottardiite, a new high-silica zeolite from Antarctica: the natural counterpart of synthetic NU-87, Eur. J. Mineral., 8, 687–693, https://doi.org/10.1127/ejm/8/4/0687, 1996.
- Grice, J. D., Gault, R. A., and Ansell, H. G.: Edingdonite: The first two Canadian occurrences, Can. Mineral., 22, 253–258, 1984.
- Grice, J. D, Kristiansen, R., Friis, H., Rowe, R., Poirier, G. G., Selbekk, R. S., Cooper, M. A., and Larsen A. O.: Ferrochiavennite, a new beryllium silicate zeolite from syenite pegmatites in the Larvik plutonic complex, Oslo Region, Southern Norway, Can. Mineral., 51, 285–296, https://doi.org/10.3749/canmin.51.2.285, 2013.
- Gude, A. J. and Sheppard, R. A.: Silica-rich chabazite from the Barstow formation, San Bernardino County, Southern California, Am. Mineral., 51, 909–915, 1966.
- Gude, A. J. and Sheppard, R. A.: Woolly erionite from the Reese river zeolite deposit, Lander County, Nevada, and its relationship to other erionites, Clay. Clay Miner., 29, 378–384, 1981.
- Harada, K., Iwamoto, S., and Kihara, K.: Erionite, phillipsite and gonnardite in the amygdales of altered basalt from Mazé, Niigata Prefecture, Japan, Am. Mineral., 52, 1785–1794, 1967.
- Hey, M. H. and Bannister F. A.: Studies on the zeolites. Part III. Natrolite and metanatrolite, Mineral. Mag., 23, 243–289, 1932a.

- Hey, M. H. and Bannister, F. A.: Studies on zeolites. Part II. Thomsonite (including faroelite) and gonnardite, Mineral. Mag., 23, 51–125, 1932b.
- Hey, M. H. and Bannister, F. A.: Studies on the zeolites. Part VI. Edingtonite, Mineral. Mag., 23, 483–494, 1934.
- Hey, M. H. and Bannister, F. A.: Studies on the zeolites. Part IX. Scolecite and metascolecite, Mineral. Mag., 24, 227–253, 1936.
- Howard, D. G., Tschernich, R. W., Smith, J. V., and Klein G. L.: Boggsite, a new high-silica zeolite from Goble, Columbia County, Oregon, Am. Mineral., 75, 1200–1204, 1990.
- Hurlbut, C. S.: Bikitaite, LiAlSi₂O₆ · H₂O, a new mineral from Southern Rhodesia, Am. Mineral., 42, 792–797, 1957.
- Jambor, J. L. and Grew, E. S.: New mineral names. Si-dominant cancrinite, Am. Mineral., 78, 235, 1993.
- Kamb, W. B. and Oke, W. C.: Paulingite, a new zeolite, in association with erionite and filiform pyrite, Am. Mineral., 45, 79–91, 1960.
- Khomyakov, A. P., Pobedimskaya, E. A., Nadezhina, T. N., Terenteva, L. E., and Rastsvetaeva, R. K.: Structural mineralogy of high-Si cancrinite, Moscow Univ. Geol. Bull., 46, 71–75, 1991a.
- Khomyakov, A. P., Semenov, E. I., Pobedimskaya, E. A., Nadezhina, T. N., and Rastsvetaeva, R. K.: Cancrisilite Na7[Al₅Si₇O₂₄]CO₃ · 3H₂O – a new mineral of the cancrinite group, Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 120, 80–84, 1991b.
- Khomyakov, A. P., Cámara, F., and Sokolova, E.: Carbobystrite, Na₈[Al₆Si₆O₂₄](CO₃) · 4H₂O, a new cancrinite-group mineral species from the Khibina Alkaline Massif, Kola Peninsula, Russia: Description and crystal structure, Can. Mineral., 48, 291– 300, https://doi.org/10.3749/canmin.48.2.291, 2010.
- Kiseleva, I., Navrotsky, A., Belitsky, I. A., and Fursenko, B. A.: Thermochemistry and phase equilibria in calcium zeolites, Am. Mineral., 81, 658–667, 1996a.
- Kiseleva, I., Navrotsky, A., Belitsky, I. A., and Fursenko, B. A.: Thermochemistry of natural potassium sodium calcium leonhardite and its cation-exchanged forms, Am. Mineral., 81, 668– 675, 1996b.
- Larsen, A. O., Nordrum, F. S., Döbelin, N., Armbruster, T., Petersen, O. V., and Erambert, M.: Haulandite-Ba, a new zeolite species from Norway, Eur. J. Mineral., 17, 143–153, https://doi.org/10.1127/0935-1221/2005/0017-0143, 2005.
- Leavens, P. B., Hurlbut, C. S., and Nelen, J. A.: Eucryptite and bikitaite from King's Mountain, North Carolina, Am. Mineral., 53, 1202–1207, 1968.
- Lengauer, C. L., Giester, G., and Tillmanns, E.: Mineralogical characterization of paulingite from Vinarická Hora, Czech Republic, Mineral. Mag., 61, 591–606, 1997.
- Lengauer, C. L., Kolitsch, U., and Tillmanns, E.: Flörkeite, K₃Ca₂Na[Al₈Si₈O₃₂] · 12H₂O, a new phillipsite-type zeolite from the Bellerberg, East Eifel volcanic area, Germany, Eur. J. Mineral., 21, 901–913, https://doi.org/10.1127/0935-1221/2009/0021-1952, 2009.
- Mandarino, J. A.: The Gladstone-Dale relationship. Part I: Derivation of new constants, Can. Mineral., 14, 498–502, 1976.
- Mandarino, J. A.: The Gladstone-Dale relationship. Part IV. The compatibility concept and its application, Can. Mineral., 19, 441–450, 1981.

- Medenbach, O., Maresch, W. V., Mirwald, P. W., and Schreyer, W.: Variation of refractive index of synthetic Mg-cordierite with H₂O content, Am. Mineral., 65, 367–373, 1980.
- Men'chikov, Y. P.: Perlialite K₉Na(Ca, Sr)Al₁₂Si₂₄O₇₂ · 15H₂O, a new potassian zeolite from the Khibina massif, Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 113, 607–612, 1984.
- Men'shikov, Y. P., Denisov, A. P., Uspenskaya, Y. I., and Lipatova, E. A.: Lovdarite, a new hydrous alkali-beryllium silicate, Doklady Akad. Nauk. SSSR, 213, 130–133, 1973.
- Merkle, A. B. and Slaughter, M.: Determination and refinement of the structure of heulandite, Am. Mineral., 53, 1120–1138, 1968.
- Merlino, S. and Orlandi, P.: Franzinite, a new mineral phase from Pitigliano (Italy), Neues Jb. Miner, Monat., 163–167, 1977a.
- Merlino, S. and Orlandi, P.: Liottite, a new mineral in the cancrinitedavyne group, Am. Mineral., 62, 321–326, 1977b.
- Nawaz, R. and Malone, J. F.: Gobbinsite, a new zeolite mineral from Co. Antrim, N. Ireland, Mineral. Mag., 46, 365–369, 1982.
- Passaglia, E.: Roggianite, a new silicate mineral, Clay Miner., 8, 107–111, 1969.
- Passaglia, E.: The crystal chemistry of chabazites, Am. Mineral., 55, 1278–1301, 1970.
- Passaglia, E. and Pongiluppi, D.: Sodian stellerite from Capo Pula, Sardegna, Lithos, 7, 69–73, 1974.
- Passaglia, E. and Vezzalini, G.: Roggianite: revised chemical formula and zeolitic properties, Mineral. Mag., 52, 201–206, 1988.
- Passaglia, E., Pongiluppi, D., and Rinaldi, R.: Merlinoite, a new mineral of the zeolite group, Neues Jb. Miner. Monat., 355–364, 1977.
- Passaglia, E, Galli, E., and Rinaldi, R.: Levynes and erionites from Sardinia, Italy, Contrib. Mineral. Petr., 43, 253–259, 1974.
- Peacor, D. R., Dunn, P. J., Simmons, W. B., Tillmanns, E., and Fischer, R. X.: Willhendersonite, a new zeolite isostructural with chabazite, Am. Mineral., 69, 186–189, 1984.
- Pekov, I. V., Olysych, L. V., Zubkova, N. V., Chukanov, N. V., Van, K., V., and Pushcharovsky, D. Y.: Depmeierite Na₈[Al₆Si₆O₂₄](PO₄, CO₃)_{1-x} ·  $3H_2O(x < 0.5)$ : a new cancrinite-group mineral species from the Lovozero alkaline pluton of the Kola Peninsula, Geol. Ore Deposits, 53, 604–613, 2011.
- Petersen, O. V., Giester, G., Brandstätter, F., and Niedermayr, G.: Nabesite, Na₂BeSi₄O₁₀ · 4H₂O, a new mineral species from the Ilímaussaq alkaline complex, South Greenland, Can. Mineral., 40, 173–181, https://doi.org/10.2113/gscanmin.40.1.173, 2002.
- Pongiluppi, D.: A new occurrence of yugawaralite at Osilo, Sardinia, Can. Mineral., 15, 113–114, 1977.
- Raade, G., Åmli, R., Mladeck, M. H., Din, V. K., Larsen, A. O., and Åsheim, A.: Chiavennite from syenite pegmatites in the Oslo region, Norway, Am. Mineral., 68, 628–633, 1983.
- Reay, A. and Coombs, D. S.: Ashtonite, a strontian mordenite, Mineral. Mag., 38, 383–385, 1971.
- Robinson, G. W. and Grice, J. D.: The barium analog of brewsterite from Harrisville, New York, Can. Mineral., 31, 687–690, 1993.
- Rouse, R. C., Peacor, D. R., Dunn, P. J., Campbell, T. J., Roberts, W. L., Wicks, F. J., and Newbury, D.: Pahasapaite, a beryllophosphate zeolite related to synthetic zeolite rho, from the Tip Top pegmatite of South Dakota, Neues Jb. Miner. Monat., 433–440, 1987.

- Rouse, R. C., Dunn, P. J., Grice, J. D., Schlenker, J. L., and Higgins, J. B.: Montesommaite, (K, Na)₉AL₉SI₂₃O₆₄ · 10H₂O, a new zeolite related to merlinoite and the gismondine group, Am. Mineral., 75, 1415–1420, 1990.
- Rüdinger, B., Tillmanns, E., and Hentschel, G.: Bellbergite-a new mineral with the zeolite structure type EAB, Mineral. Petrol., 48, 147–152, 1993.
- Sahama, T. G. and Lehtinen, M.: Harmotome from Korsnäs, Finland, Mineral. Mag., 36, 444–448, 1967.
- Sarp, H., Deferne, J., Bizouard, H., and Liebich, B. W.: La parthéite, CaAl₂Si₂O₈ · 2H₂O, un nouveau silicate naturel d'aluminium et de calcium, Schweiz. Miner. Petrog., 59, 5–13, 1979.
- Seki, Y. and Oki, Y.: Wairakite-analcime solid solutions from lowgrade metamorphic rocks of the Tanzawa mountains, central Japan, Mineral. J., 6, 36–45, 1969.
- Shannon, R. D. and Fischer, R. X.: Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices: oxides and oxysalts, Am. Mineral., 101, 2288–2300, https://doi.org/10.2138/am-2016-5730, 2016.
- Shannon, R. C., Lafuente, B., Shannon, R. D., Downs, R. T., and Fischer, R. X.: Refractive indices of minerals and synthetic compounds, Am. Mineral., 102, 1906–1914, https://doi.org/10.2138/am-2017-6144, 2017.
- Sheppard, R. A. and Gude, A. J.: Chemical composition and physical properties of the related zeolites offretite and erionite, Am. Mineral., 54, 875–886, 1969.
- Staples, L. W. and Gard, J. A.: The fibrous zeolite erionite; its occurrence, unit cell, and structure, Mineral. Mag., 32, 261–281, 1959.
- Tiba, T. and Matsubara, S.: Levyne from Dözen (Oki Islands), Japan, Can. Mineral., 15, 536–539, 1977.
- Tomita, K., Koiso, M., Yamamoto, M., and Oba, N.: Laumontite in an andesite from Kinzan, Satsuma-Cho, Kagoshima Prefecture, J. Japan. Assoc. Mineral. Petr. Econ. Geol., 74, 443–449, 1979.
- Vezzalini, G. and Oberti, R.: The crystal chemistry of gismondines: the non-existence of K-rich gismondines, B. Minéral., 107, 805– 812, 1984.
- Walter, F.: Weinebeneite, CaBe₃(PO₄)₂(OH)₂ · 4H₂O, a new mineral species: mineral data and crystal structure, Eur. J. Mineral., 4, 1275–1283, https://doi.org/10.1127/ejm/4/6/1275, 1992.
- Wise, W. S.: New occurrence of faujasite in southeastern California, Am. Mineral., 67, 794–798, 1982.
- Wise, W. S., Nokleberg, W. J., and Kokinos, M.: Clinoptilolite and ferrierite from Agoura, California, Am. Mineral., 54, 887–895, 1969.
- Yajima, S. and Nakamura, T.: New occurrence of ferrierite, Mineral. J., 6, 343–364, 1971.
- Y. W., Yang, Evans, S. Н., Downs, R. T., and Yang, H.: Lotharmeyerite,  $Ca(Zn, Mn)_2(AsO_4)_2$ - $(H_{2}O, OH)_{2}$ , Crystallogr., E68, i9-i10, Acta https://doi.org/10.1107/S1600536811054286, 2012.